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Asymptotic Safety

RG approach to QFT

® theory at scale k described by effective average action I,
® upper (ultraviolet) cutoff A: ['x = Spic
e use RG flow to integrate out fluctuations until lower cutoff k = A

° valid on all scales, limit A — oo and A — 0 exists
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Application to Classical Gravity

® unified theory requires quantization of spacetime metric
® at IR cutoff: Einstein-Hilbert action
® perturbative approach leads to severe divergences

® theory not renormalizable in perturbative way



Asymptotic Safety

® Asymptotic Safety Scenario [weinbergs0] : gravity non-perturbatively
renormalizable

® needs nongaussian (ultraviolet) fixed point with finite number of relevant
directions to protect UV from unphysical divergences

® asymptotic freedom (QCD): theory approaches gaussian fixed point for k — oo

o =
-0 =2 =05 001 02 03 04 045 A 05

[cf. Reuter, Saueressig '02] [ct. Christiansen, Litim, Pawlowski, Rodigast '12]



Setting the stage
® nontrivial UV fixed point suspected in (D > 2) by

perturbation theory and functional RG calculations [Codelio, Percacci '08]
[Flore, Wipf, Zanusso '12]

O(N) nonlinear Sigma model

1 .o
S= 27 d°x 8,40" ¢, where ¢° = 1

® Flow diagram determinable from the lattice via Monte Carlo Renormalization
Group (MCRG) techniques
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® Flow diagram determinable from the lattice via Monte Carlo Renormalization
Group (MCRG) techniques

Our Setup

® |ocal HMC with O(N)-valued fields to generate Markov Chain
® blockspin transformation to integrate out fluctuations

® canonical demon method to determine effective couplings

[Hasenbusch, Pinn, Wieczerkowski '95]



RG picture on the lattice

(discrete) lattice momenta cut off by inverse lattice spacing a~' and inverse
linear box size (aN) ™"

lattice simulation equivalent to integrating out all fluctuations inbetween

correlation functions determined by direct measurement
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Observables

e (discrete) beta function 3; = 5(g;) = gP°**? —

ap;
ag;

gi

® (discrete) stability matrix S =




Systematic Errors

finite volume effects not visible for largest lattices considered (32°)
discretisation errors small near critical line
effective action in demon method leads to truncation errors

half group property of RG transformation Rs (blockspin + demon) violated

Rs o Rs # Re
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Systematic Errors

finite volume effects not visible for largest lattices considered (32°)

® discretisation errors small near critical line

effective action in demon method leads to truncation errors

® half group property of RG transformation Rs (blockspin + demon) violated

Rs o Rs # Re

Option 1:

e follow derivative expansion ; up to four operators, i.e. all possible operators up
to fourth order in the momenta

Option 2:

q);( X P(exp{C . (D; Z (Z)X}) [Hasenfratz, Hasenfratz, Heller, Karsch '84]

xENg
e parametrize C = ), ¢;g; such that for g — 0o, C — oo holds



D =2: Asymptotic Freedom



1-Parameter effective action
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e lattice beta function does not depend on the lattice size (in this
truncation)

e considerable variation w.r.t. the optimization parameter ¢

e crucial implications : artificial fixed points emerge / true fixed
points vanish due to truncation



Optimization of the RG transformation |

XXX XXX X X X X X X
— & — block spin ~—&/b— | demon method, | ~— & —
- B
XXX XXX | transformation X X X X X X
XXX XXX
XXX XXX X X X X X X
| composite transformation Ry T

® MC simulation allows to directly measure lattice correlation functions which are
free from truncation errors

® blockspin transformation does not change the IR physics
® idea : simulate the ensemble with truncated couplings

® systematic truncation effects show as differences in the correlation functions of
the original and truncated ensemble



Optimization of the RG transformation |l

[cf. Shenker, Tobochnik '80]

® RG picture: trajectories of the RG flow are by the
, Which connects the fixed points of the RG flow

® idea: location of the renormalized trajectory depends on RG scheme

® optimization equivalent to an RG scheme where the renormalized trajectory is
closest to a given truncation



1-Parameter effective action
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e compare two-point correlation lengths,
correlation functions

e significant deviations from g4 /&3 = 2 for large and small
optimization parameter

o choose c5P' = 2.8 which is closest to the expected value



1-Parameter effective action
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* beta function for ci” = 2.8 approaches the known

In(2) /67

e additional zero crossing is an artifact of the truncation

e high-temperature fixed point at zero coupling and
low-temperature fixed point at infinite coupling



2-Parameter effective action
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e trajectories flow from the low-temperature fixed point (LT FP) in
the UV to the high-temperature fixed point (HT FP) in the IR

e both operators are
e low-temperature FP corresponds to GaufB3ian FP (asymptotic

freedom )



D =3: Asymptotic Safety



1-Parameter effective action
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® zero crossing at finite coupling with a UV-attractive direction indicates
non-GauBian fixed point



1-Parameter effective action
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e critical exponent v of the correlation length extracted from slope of the beta
function

® y deviates from expected behaviour for N > 6
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2-Parameter effective action
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2-Parameter effective action
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high temperature FP : spins randomly aligned, absolute disorder
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2-Parameter effective action
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high temperature FP : spins randomly aligned, absolute disorder
low temperature FP : spins uniformly aligned, absolute order
non-Gaussian FP : 1 IR-relevant, 1 IR-irrelevant direction

critical line : separates symmetry broken and unbroken regime
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2-Parameter effective action
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high temperature FP : spins randomly aligned, absolute disorder
low temperature FP : spins uniformly aligned, absolute order
non-Gaussian FP : 1 IR-relevant, 1 IR-irrelevant direction

critical line : separates symmetry broken and unbroken regime
renormalized trajectory : attractor for the RG trajectories



2-Parameter effective action

0.03
\
0.02 | ‘ |
[l
9 \‘\‘\ ’ ’ A,A
0.01 ‘\ " ’ /’
' a 4"/‘/ g
qu,, 4
0:00 0 0.15 o|.2 0.25

90

® starting from the usual Hamiltonian for the Heisenberg ferromagnet there are
three possible IR fixed points of the RG flow

(] : non-gaussian FP corresponds to of the linear
O(N) sigma model



IR or UV fixed point?
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® Heisenberg ferromagnet is an effective theory that is defined at some finite UV
cutoff

® initial goal : theory that is IR- and



IR or UV fixed point?
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® complete theory "lives” on the
® non-gaussian fixed point acts as a UV fixed point with one relevant direction

® asymptotic safety scenario realized (in this truncation ...)
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2-Parameter effective action
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high temperature FP: v ~ —1
low temperature FP: v ~ 1

non-Gaussian FP: v = 0.62(3)



1-Parameter effective action
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® significant improvement for the critical exponent v of the correlation length

® large-N limit inconclusive (numerical effort grows with N)



3-Parameter effective action

g1

® only irrelevant coupling is added



3-Parameter effective action
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® only irrelevant coupling is added



Summary

® MCRG+Demon Method suitable to obtain global flow diagram
® in principle trajectories on moderate lattices

® gsystematic errors of truncation reduced by optimization scheme

D=2
® flow diagram shows low-temperature (GauBian) FP in the UV and
high-temperature FP in the IR ( reproduced)
D=3

e flow diagram reveals two trivial IR fixed points (absolute order and absolute
disorder) and one nontrivial UV fixed point (Wilson-Fisher-FP)

e fixed point structure stable against change of truncation

® only one relevant direction — asymptotic safety scenario realized

Outlook

® applicable to fermionic models (e.g. Thirring model)
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